Interface electronic structures of reversible double-docking self-assembled monolayers on an Au(111) surface.

نویسندگان

  • Tian Zhang
  • Zhongyun Ma
  • Linjun Wang
  • Jinyang Xi
  • Zhigang Shuai
چکیده

Double-docking self-assembled monolayers (DDSAMs), namely self-assembled monolayers (SAMs) formed by molecules possessing two docking groups, provide great flexibility to tune the work function of metal electrodes and the tunnelling barrier between metal electrodes and the SAMs, and thus offer promising applications in both organic and molecular electronics. Based on the dispersion-corrected density functional theory (DFT) in comparison with conventional DFT, we carry out a systematic investigation on the dual configurations of a series of DDSAMs on an Au(111) surface. Through analysing the interface electronic structures, we obtain the relationship between single molecular properties and the SAM-induced work-function modification as well as the level alignment between the metal Fermi level and molecular frontier states. The two possible conformations of one type of DDSAM on a metal surface reveal a strong difference in the work-function modification and the electron/hole tunnelling barriers. Fermi-level pinning is found to be a key factor to understand the interface electronic properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First-principles study on the electronic structure of Thiophenbithiol (TBT) on Au(100) surface

First principle calculations were performed using Density functional theory within the local spin density approximation (LSDA) to understand the electronic properties of Au(100)+TBT system and compare the results with Au(100) and bulk Au properties. Band structure, the total DOS and charge density for these materials are calculated. We found that the HOMO for Au(100)+TBT becomes broader than Au...

متن کامل

Self-assembled monolayers of polar molecules on Au(111) surfaces: distributing the dipoles.

Quantum-mechanical calculations are performed to investigate the interface between Au(111) surfaces and self-assembled monolayers (SAMs) of organic thiols. Dipolar pyrimidine units act as building blocks to systematically tune the molecular dipole moments via the number of repeat units. The resulting work-function modifications and the energetic alignment of the frontier electronic states in th...

متن کامل

The interface structure of n-alkylthiolate self-assembled monolayers on coinage metal surfaces.

The current state of understanding of the structure of the metal/thiolate interface of n-alkylthiolate 'self-assembled monolayers' (SAMs) on Cu(111), Ag(111) and Au(111) is reviewed. On Cu(111) and Ag(111) there is now clear evidence that adsorbate-induced reconstruction of the outermost metal layer occurs to a less atomically-dense structure, with the S head-group atom bonded to four-fold and ...

متن کامل

First-principles study on the electronic structure of Thiophenbithiol (TBT) on Au(100) surface

First principle calculations were performed using Density functional theory within the local spin density approximation (LSDA) to understand the electronic properties of Au(100)+TBT system and compare the results with Au(100) and bulk Au properties. Band structure, the total DOS and charge density for these materials are calculated. We found that the HOMO for Au(100)+TBT becomes broader than Au...

متن کامل

On the structure and evolution of the buried S/Au interface in self-assembled monolayers: X-ray standing wave results

We describe a structural study of the S/Au interface for decanethiol monolayers (C10) on a Au(111) surface using the technique of X-ray standing waves ( XSWs). The XSW results for full-coverage monolayers are inconsistent with any model incorporating a single sulfur adsorption site, such as the widely assumed threefold hollow site on the Au(111) surface. Instead, the XSW results reveal two dist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 372 2013  شماره 

صفحات  -

تاریخ انتشار 2014